FAST ALGORITHMS FOR SEQUENCE PATTERN RECOGNITION IN MASSIVE DATASETS

D. Gunaseelan

Department of Information Technology, IBRI College of Technology
IBRI, Sultanate of Oman, dgseela@yahoo.com

ABSTRACT

Sequential Pattern Mining is the process of applying data mining techniques to a sequential database for the purpose of discovering the correlation relationships that exist among an ordered list of events. The patterns can be used to focus on the retailing industry, including attached mailing, add-on sales and customer satisfaction. In this paper, I present fast and efficient algorithms called AprioriAllSID and GSPSID for mining sequential patterns that are fundamentally different from known algorithms like AprioriAll and GSP (Generalized Sequential Patterns). The algorithm has been implemented on an experimental basis and its performance studied. The performance study shows that the proposed algorithms have an excellent performance over the best existing algorithms.

Keywords: Data Mining, Sequential Pattern Mining, AprioriAllSID algorithm, GSPSID algorithm, Data Sequence.

1. INTRODUCTION

Data Mining, also known as Knowledge discovery in Databases, has attracted a lot of attention. Because of the progress of data collection tools, large amount of transaction data have been generated, but such data being archived and not used efficiently [4]. Data Mining is the method of discovery of useful information such as rules and previously unknown patterns existing between data items embedded in large databases, which allows more effective utilization of existing data.
The problem of mining sequential patterns in a large database of customer transactions was introduced in [2]. A transaction data typically consists of a customer ID, a transaction ID and a transaction time associated with each transaction and item bought per-transaction. By analyzing these customer transaction data, we can extract the sequential patterns such as “10% of customers who buy both A and B also buy C in the next transaction”.

Several algorithms have been proposed to find sequential pattern [2] [22]. An algorithm for finding all sequential patterns, named AprioriAll, was presented in [2]. First, AprioriAll discovers all the set of items (itemset) with a user-defined minimum support (large itemset), where the support is the percentage of customer transactions that contain the itemsets. Second, the database is transformed by replacing the itemsets in each transaction with the set of all large itemsets. Last, it finds the sequential patterns. It is costly to transform the database. In [25], a graph-based algorithm DSG (Direct Sequential Patterns Generation) was presented. DSG constructs an association graph to indicate the associations between items by scanning the database once, and generates the sequential patterns by traversing the graph. Though the disk I/O cost of DSG is very low, the related information may not fit in the memory when the size of the database is large.

In [22], GSP (Generalized Sequential Pattern) algorithm that discovers generalized Sequential Patterns was proposed. GSP finds all the frequent sequences without transforming the database. Besides, some generalized definitions of sequential patterns are introduced in [2] [3]. First, time constraints are introduced. Users often want to specify maximum or minimum time period between adjacent elements. Second, flexible definition of a customer transaction is introduced. It allows a user-defined window-size within which the items can be present. Third, given a user-defined taxonomy (is-a hierarchy) over the data items, the generalized sequential patterns, which includes items spanning different levels of the taxonomy, is introduced. All the previous algorithms for discovering sequential patterns are serial algorithms. Finding sequential patterns has to handle a large amount of customer transaction data and requires multiple passes over the database, which requires long computation time. Thus, we introduce efficient algorithms for discovering sequential patterns in a large collection of sequenced data.

In this paper, we consider the new algorithms for mining sequential patterns in sequential environment. All the earlier algorithms are multiple pass over the data whereas in the proposed algorithm, the original database is read only and we introduce a new temporary database D' for the next iterations. After completing the first iteration, we can find the candidate sequence of size-2 using temporary database D'. Then we can find the candidate k-size sequences until the candidate sequence or temporary database size is empty. At this stage, the database
size is reduced and the number of candidate sequences is also reduced. This feature is used for finding sequential patterns and also reduced the time complexity. So the proposed methods are more efficient than all other methods like AprioriAll and Generalized Sequential Patterns (GSP).

The rest of this paper is organized as follows: Section 2 describes the problem of mining sequential patterns. In section 3, we propose efficient algorithms namely AprioriAllSID and GSPSID for discovering sequential patterns. Relative performance study is given in section 4. Section 5 concludes the paper.

2. SEQUENTIAL PATTERN MINING

2.1 Statement of the Problem

The problem of mining sequential patterns can be stated as follows: Let \(I = \{i_1, i_2, ..., i_m\} \) be a set of \(m \) distinct attributes, also called items. An itemset is a non-empty unordered collection of items (without loss of generality, we assume that items of an itemset are sorted in increasing order). All items in an itemset are assumed to occur at the same time. A sequence is an ordered list of itemsets. An itemset \(i \) is denoted as \((i_1, i_2, ..., i_k) \), where \(i_j \) is an item. An itemset with \(k \) items is called a \(k \)-itemset. A sequence \(s \) is denoted as \((s_1 \rightarrow s_2 \rightarrow ... \rightarrow s_q) \), where the sequence element \(s_j \) is a \(s_j \)-itemset. A sequence with \(k \)-items (\(k = \sum_{j=1}^{q} |s_j| \)) is called a \(k \)-sequence. For example, \((B \rightarrow AC) \) is a 3-sequence. An item can occur only once in an itemset, but it can occur multiple times in different itemsets of a sequence.

A sequence \(p = (p_1 \rightarrow p_2 \rightarrow ... \rightarrow p_n) \) is a subsequence of another sequence \(q = (q_1 \rightarrow q_2 \rightarrow ... \rightarrow q_n) \), denoted as \(p \subseteq q \), if there exist integers \(i_1 < i_2 < \ldots < i_n \) such that \(p \subseteq q \) for all \(p_i \). For example the sequence \((B \rightarrow AC) \) is a subsequence of \((AB \rightarrow E \rightarrow ACD) \), since the sequence elements \(B \subseteq AB \), and \(AC \subseteq ACD \). On the other hand the sequence \((AB \rightarrow E) \) is not a subsequence of \((ABE) \), and vice-versa. We say that \(p \) is a proper subsequence of \(q \), denoted as \(p \subset q \), if \(p \subseteq q \) and \(p \not\subset q \).

A transaction \(T \) has a unique identifier and contains a set of items, i.e., \(T \subseteq I \). A customer \(C \) has a unique identifier and has associated with it a list of transactions \(\{T_1, T_2, ..., T_n\} \). We assume that no customer has more than one transaction with the same time-stamp, so that we can use the transaction-time as the transaction identifier. We also assume that the list of customer transactions is stored by the transaction-time. Thus the list of transactions of a customer is itself a sequence \(T_1 \rightarrow T_2 \rightarrow ... \rightarrow T_n \) called a customer sequence. The database \(D \) consists of a number of such customer sequences.
A customer sequence \(C \) is said to contain a sequence \(p \), if \(p \subseteq q \) i.e., \(p \) is a subsequence of the customer sequence \(C \). The support or frequency of a sequence \(C \) is denoted as \(\sigma(p) \), which is the total number of customers that contains this sequence. Given a user-specified threshold called minimum support (denoted min-sup), we say that a sequence is frequent if it occurs more than minimum support times. The set of frequent \(k \)-sequences is denoted as \(F_k \). A frequent sequence is maximal if it is not a subsequence of any other sequence.

The problem of finding sequential patterns can be decomposed into two parts:

i) Generate all combinations of customer sequences with fractional sequence support (i.e., support \(D(C) / |D| \)) above a certain threshold called minimum support \(m \).

ii) Use the frequent sequences to generate sequential patterns.

The second sub problem is straightforward. However discovering frequent sequences is a non-trivial issue, where the efficiency of an algorithm strongly depends on the size of the candidate sequences.

3. AprioriAllSID

In this section we describe the algorithm AprioriAllSID based on [2].

3.1 Description

The AprioriAllSID algorithm is shown in figure 1. The feature of the proposed algorithm is that the given customer transaction database \(D \) is not used for counting support after the first pass. Rather the set \(C_k \) is used for determining the candidates’ sequences before the pass begins. Each member of the set \(C_k \) is of the form \(< \text{SID}, \{ S_k \} > \), where each \(S_k \) is a potentially frequent \(k \)-sequence present in the sequence with identifier \(\text{SID} \). For \(k=1 \), \(C \) corresponds to the database \(D \), although conceptually each sequence \(i \) is replaced by the sequence \(\{ i \} \). For \(k > 1 \), \(C_k \) is corresponding to customer sequence \(S \) is \(< S.\text{SID}, \{ s \in C_k \mid s \text{ contained in } t \} > \). If \(S \)’s customer sequence does not contain any candidate \(k \)-sequence, then \(C_k \) will not have an entry for this customer sequence.

Thus, the number of sequences in the database is greater than the number of entries in \(C_k \). The number of entries in \(C_k \) may be smaller than the number of sequences in database especially for large value of \(k \). In addition, for large values of \(k \), each entry may be smaller
than the corresponding sequence because very few candidate sequences may be contained in the sequence. However, for small values of \(k \), each may be larger than the corresponding sequence because an entry in \(C_k \) includes all candidate k-sequences contained in the sequence.

3.2 Algorithm AprioriAllSID

In figure 1, we present an efficient algorithm called AprioriAllSID, which is used to discover all sequential patterns in large customer database.

Algorithm AprioriAllSID

1. \(L_1 = \{ \text{Large size-1 sequences} \} \); // result of L-itemset phase
2. \(C'_k = \text{database D} \);
3. For (\(k=2; L_{k-1} = \emptyset; k++ \)) do begin
4. \(C_k = \text{New candidate sequences generated from } L_{k-1} \);
5. \(C'_k = \emptyset \);
6. for all entries \(s \in C'_{k-1} \) do begin

 // determine candidate sequences in \(C_k \) contained in the sequence with Identifier \(s.SID \)

 7. \(C_i = \{ s \in C_k \mid s-C[k] \in s.set-of-sequences \land (s-C[k]) \in s.set-of-sequences \} \);
8. for each customer sequence \(C \) in the database do
9. increment the count of all candidate sequences in \(C_k \) that are contained in \(s \);
10. if \((C_i \neq \emptyset) \) then \(C'_k = C'_k + <s.SID, C_i> \);
11. end;
12. \(L_k = \text{Candidate sequences in } C_k \text{ with minimum support} \);
13. End;
14. Answer = \(\bigcup_k L_k \);

Figure 1: Algorithm AprioriAllSID
Procedure Candidate-gen \((L_{k-1}; \text{frequent } (k-1)\text{-itemsets}; \text{min-sup: minimum support}) \)
1. For each itemset \(l_1 \in L_{k-1} \)
2. For each itemset \(l_2 \in L_{k-1} \)
3. If \((l_1[1] = l_2[2]) \land (l_1[2] = l_2[2]) \land (l_1[k-1] = l_2[k-2]) \land (l_1[k-1] < l_2[k-1])\) then
4. \(c = l_1 \cup L_2 \); //join step: generate candidate sets
5. If has-infrequent-subset \((c, L_{k-1}) \) then
6. Delete \(c \); //prune step: remove infrequent candidate sets
7. Else add \(c \) to \(C_k \);
8. End if;
9. Return;

Figure 2: Procedure Candidate-gen

Procedure Has-infrequent-subset(\(c \):candidate \(k \)-itemset; \(L_{k-1} \): frequent \((k-1)\)-itemset;)
1. For each \((k-1)\)-subsets \(s \) of \(c \)
2. If \(s \not\in L_{k-1} \) then
3. Return true;
4. Return false;

Figure 3: Procedure Has-infrequent-subset

Example: Consider the database in figure 4 and assume that minimum support is 2 customer sequences. By using Candidate-gen procedure in figure 2, with size-1 of frequent sequences gives the candidate sequence in \(C_2 \) by iterating over the entries in \(C' \) and generates \(C' \) in step 6 to 11 of figure 1. The first entry in \(C' \) is <\{(1) (5)\} \{2\} \{3\} \{4\}> corresponding to customer sequence 10. The \(C_i \) at step 7 corresponding to this entry \(s \) is \{\{(1) (5)\} \{2\} \{3\} \{4\}\} are members of \(s \).set-of-sequences.

By using Candidate-gen procedure with \(L_2 \) gives \(C_3 \). Making pass over the data with \(C' \) and \(C_3 \) generates \(C' \). This process is repeated until there is no sequence in the customer sequence database.

Lemma 1: For all \(k > 1 \), if the set of \((k-1)\)-sequences when the SIDs of the generating transactions are kept associated with the candidate \(C_{k-1} \) is correct and complete and frequent \((k-1)\) sequence is correct, then the set \(C_i \) generated in step 7 in the \(k \)th pass is the same as the set of candidate \(k \)-sequences in \(C_k \) contained in the customer sequence with identifier \(s \).SID.
A candidate sequence \(s = s[1] \ldots s[k] \) is present in the customer sequence \(s.SID \) if and only if both \(s_1 = (s-s[k]) \) and \(s_2 = (s-s[k-1]) \) are in the customer sequence \(s.SID \). Since the candidate \(k \)-sequence was found by using Candidate-gen \((L_{k-1}) \), all subsequences of \(s \in k \) must be frequent. Hence, \(s_1 \) and \(s_2 \) must be frequent sequences. Thus, if a candidate sequence \(s \in C_k \) is contained in the customer sequence \(s.SID \), \(s_1 \) and \(s_2 \) must be members of \(s.set-of-sequences \) since \(C'_{k-1} \) is complete. A sequence \(s \) will be a member of \(C_k \). Hence, if \(c \in C_k \) is not contained in a customer sequence \(s.SID \), \(s \) will not be a member of \(C_k \).

<table>
<thead>
<tr>
<th>TID</th>
<th>Sequence</th>
<th>Set-of-sequences</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>(<{1,5}{2}{3}{4}>)</td>
<td>(<{1}{3}{4}{3,5}>)</td>
</tr>
<tr>
<td>20</td>
<td>(<{1}{3}{4}{3,5}>)</td>
<td>(<{1}{3}{4}{3,5}{4,5}>)</td>
</tr>
<tr>
<td>30</td>
<td>(<{1}{2}{3}{4}>)</td>
<td>(<{1}{2}{3}{4}>)</td>
</tr>
<tr>
<td>40</td>
<td>(<{1}{3}{5}>)</td>
<td>(<{1}{3}{5}>)</td>
</tr>
<tr>
<td>50</td>
<td>(<{4}{5}>)</td>
<td>(<{4}{5}>)</td>
</tr>
</tbody>
</table>

Figure 4: Example

![Customer Database](image)
3.3 Algorithm GSPSID

In figure 3, we propose an efficient algorithm called GSPSID, based on [20], which is used to discover all generalized sequential patterns in large customer database.

Algorithm GSPSID

1. Compute T^*, a set of ancestor of each item, from taxonomy T.
2. $L_1 = \{\text{Large size-1 sequences}\}$; // Result of Litemset phase.
3. $C_1 = \text{database } D; k = 2$;
4. While ($L_{k-1} = \emptyset$) do Begin
 5. $C_k = \text{New candidate sequences generated from } L_{k-1}$;
 6. If ($k = 2$) then
 7. Delete any candidate sequence in C_2 that consists of a sequence of item and its ancestors.
8. Delete any ancestors in T^* that are not present in any of the candidates in C_k.
9. $C_k = \emptyset$;
10. for all entries $s \in C_{k-1}$ do Begin
 11. // determine candidate sequences in C_k contained in the sequence with Identifier s.SID
 12. $C_t = \{s \in C_k | s \cdot C[k] \in s\cdot\text{set-of-sequences} \wedge (s-C[k]) \in s\cdot\text{set-of-sequences}\}$;
 13. for each customer sequence s in the database do
 14. Add all ancestors of x in T^* to s;
 15. Remove any duplicates from s;
 16. increment the count of all candidate sequences in C_k that are contained in s;
 17. if ($C_t \neq \emptyset$) then $C'_k = C'_k + <s$.SID, $C_t>;
18. End;
19. $L_k = \text{Candidate sequences in } C_k \text{ with minimum support};$
20. Answer = $\cup_k L_k$;

Figure 5: Algorithm GSPSID

3.4 Description

We add optimizations to GSP algorithm, which gives the algorithm GSPSID. In GSPSID algorithm, given original database D is not used for counting after the first pass. The first pass of algorithm determines the support of each item, like GSP algorithm. At the end of first pass, the algorithm knows which items are frequent, i.e., has minimum support. We introduce
the temporary database D' which is used to determine the candidate sequences before the pass begins. The member of that temporary database is of the form $(\text{SID}, \{S_k\})$, where each S_k is a potentially frequent k-sequence present in the sequence with identifier SID.

For $k=1$, C_1 is the corresponding temporary database D'. If $k=2$, then we add three optimizations, based on [2] to reduce the size of the database. If a customer sequence does not contain any candidate k-sequence, then C'_k will not have an entry for this customer sequence. Thus, the number of sequences in the database is greater than the number of entry in C'_k. Conversely, the number of entries in C'_k may be smaller than the number of sequences in database especially for large values of k. In addition, for large values of k, each entry may be smaller than the corresponding sequence because very few candidate sequences may be contained in the sequence. For small values of k, each may be larger than the corresponding sequence because an entry in C_k includes all candidate k-sequences contained in the sequence.

3.5 Data Structure used

Both algorithms use same data structures. Each candidate sequence is assigned a unique number called its SID. Each set of candidate sequence C'_k is kept in an array indexed by the IDs of the sequences in C_k. So, a member of C'_k is of the form $(\text{SID}, \{ID\})$. Each C'_k is stored in a sequential structure.

There are two additional fields maintained for each candidate sequence. They are

1. **Generators**: This field of sequence C_k stores the IDs of the two maximal $(k-1)$ sequence, the combination of which generated C_k.
2. **Extensions**: This field stores IDs of all the sequences C_{k+1} obtained as an extension of C_k.

Now, s.set-of-sequence of C'_{k-1} gives the IDs of all the $(k-1)$-candidate sequence contained in transaction s.SID. For each such candidate sequence C_{k-1}, the extensions field gives S_k the set of IDs of all the candidate k-sequences that are extensions of C_{k-1}. For C_k in S_k, the generators field gives the IDs of the two sequences that generated C_k. If these sequences are present in the entry for s.set-of-sequences, C_k is present in customer sequence s.SID. Hence we add C_k to C'_t. By using this data structure we can efficiently store and process the candidate sequences.
4. PERFORMANCE EVALUATION

In this section, we describe the experiments and the performance results of AprioriAllSID algorithms. We also compare the performance with the AprioriAll and GSP algorithms. We performed our experiments on an IBM Pentium machine. Using data set generator, we have simulated the data and tested algorithms like AprioriAll, AprioriAllSID, GSP and GSPSID. We have used the simulated data for the performance comparison experiments. The data sets are assumed to simulate a customer-buying pattern in a retail environment used in [20].

In the performance comparison, we used the five different data sets. The Table 1 & 2 shows the performance of AprioriAll, GSP, AprioriAllSID and GSPSID for minimum support 1% to 5% for different volume of data. Even though AprioriAllSID and GSPSID seem to be nearly equal, for massive volume of data, the performance of AprioriAllSID and GSPSID will be far better than AprioriAll and GSP algorithms.

Table 1: Performance evaluation between AprioriAll and AprioriAllSID algorithms

<table>
<thead>
<tr>
<th>DB Size</th>
<th>AprioriAll (Execution Time in Seconds)</th>
<th>AprioriAllSID (Execution Time in Seconds)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1%</td>
<td>2%</td>
</tr>
<tr>
<td>100K</td>
<td>187</td>
<td>199</td>
</tr>
<tr>
<td>200K</td>
<td>325</td>
<td>339</td>
</tr>
<tr>
<td>300K</td>
<td>428</td>
<td>447</td>
</tr>
<tr>
<td>400K</td>
<td>559</td>
<td>587</td>
</tr>
<tr>
<td>500K</td>
<td>678</td>
<td>691</td>
</tr>
</tbody>
</table>

Table 2: Performance evaluation between GSP and GSPSID algorithms

<table>
<thead>
<tr>
<th>DB Size</th>
<th>GSP (Execution Time in Seconds)</th>
<th>GSPSID (Execution Time in Seconds)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1%</td>
<td>2%</td>
</tr>
<tr>
<td>100K</td>
<td>149</td>
<td>188</td>
</tr>
<tr>
<td>200K</td>
<td>251</td>
<td>289</td>
</tr>
<tr>
<td>300K</td>
<td>339</td>
<td>368</td>
</tr>
<tr>
<td>400K</td>
<td>426</td>
<td>467</td>
</tr>
<tr>
<td>500K</td>
<td>512</td>
<td>541</td>
</tr>
</tbody>
</table>
Table 1 and 2 show the execution times for the five data sets for an increasing value of minimum support (say 1% to 5%). The execution times increase for both AprioriAllSID and AprioriAll algorithms and GSP and GSPSID as the minimum support is decreased because the total number of candidate sequences increase. AprioriAll algorithm in [2] and GSP [20] are the multiple passes over the data. So, the execution time is increased with increase of the customer transactions in the database. In Table 1 and 2, we can conclude that the AprioriAllSID algorithm is 2 times faster than AprioriAll algorithm and GSP algorithm is 3 times faster than GSPSID for small volume of data and more than the order of magnitude for the large volume of data. The data sets ranges from giga bytes to tera bytes and the proposed algorithms will be much faster than AprioriAll and GSP. Thus we conclude that the proposed algorithms are quite suitable for massive databases.

5. CONCLUSION

We present two new algorithms, AprioriAllSID and GSPSID, for discovering all relevant generalized association rules between items in massive database of transactions. We compare AprioriAllSID algorithm with AprioriAll algorithm and GSPSID Algorithm with GSP algorithm in [10]. We presented experimental results, using synthetic data, showing that the proposed algorithms always outperform AprioriAll and GSP algorithms. The performance gap increases with the problem size, and range from the factor of two for small problems to more than an order of magnitude for large problems.

REFERENCES

