RESEARCH ARTICLE

AN ALTERNATIVE METHOD FOR CONSTRUCTING HADAMARD MATRICES

A. P. Batuwita ${ }^{I *}$, N. T. S. G. Gamachchige ${ }^{1}$, P. G. R. S. Ranasinghe ${ }^{2}$, A. A. I. Perera ${ }^{2}$
${ }^{1}$ Department of Science and Technology, University of Uva Wellassa, Sri Lanka ${ }^{2}$ Department of Mathematics, Faculty of Science, University of Peradeniya, Sri Lanka.

Abstract

Symmetric Hadamard matrices are investigated in this research and an alternative method of construction is introduced. Using the proposed method, we can construct Hadamard matrices of order $2^{n+1}(q+1)$ where $q \equiv 1(\bmod 4)$ and $n \geq 1$.

This construction can be used to construct an infinite number of Hadamard matrices. For the present study, we use quadratic non-residues over a finite field.

Keywords: Hadamard matrices, quadratic non-residue, symmetric hadamard matrices
DOI. http://doi.org/10.4038/jsc.v12i2.33

1. INTRODUCTION

A Hadamard matrix H of order n whose rows and columns are mutually orthogonal with entries ± 1 and satisfying $H H^{T}=n I_{n}$, where H^{T} is the transpose of H and I_{n} is the identity matrix of order n [1]. French mathematician Jacques Hadamard proved that such matrices could exist only if n is 1,2 or a multiple of 4 [2]. Still there are unknown Hadamard matrices of order of multiple of 4. If $H=H^{T}$, then H is called symmetric Hadamard matrix. These matrices can be transformed to produce incomplete block design, t-design, error correcting and detecting codes, and other mathematical and statistical objects [3].

Hadamard matrices can be constructed in many ways. The first construction was published by Sylvester in 1867. A new Hadamard matrix can always be obtained from a known Hadamard matrix using the method known as the Sylvester construction [4]. If H_{n} is an $n \times n$ Hadamard matrix, then a $2 n \times 2 n$ matrix $H_{2 n}$ can be defined as

$$
H_{2 n}=\left[\begin{array}{cc}
H_{n} & H_{n} \\
H_{n} & -H_{n}
\end{array}\right] .
$$

[^0]In 1893, Jacques Hadamard introduced Hadamard matrices of order 12 and 20. He introduced his matrices when studying how large the determinant of a square matrix can be [5]. Another popular construction of Hadamard matrices were due to the English Mathematician Raymond Paley. He gave construction methods for various infinite classes of Hadamard matrices. The Paley construction is a method for constructing Hadamard matrices using finite fields $\mathrm{GF}(\mathrm{q})$ [6]. This method uses quadratic residues in $\mathrm{GF}(\mathrm{q})$ where q is a power of an odd prime number, $\mathrm{GF}(\mathrm{q})$ is a Galois field of order q . An element a in $\operatorname{GF}(q)$ is a quadratic residue if and only if there exists b in $\operatorname{GF}(q)$ such that $a=b^{\mathrm{n}}$. Otherwise, a is quadratic non-residue. Paley define quadratic character $\chi(a)$ indicates whether the given finite field element a is a perfect square or not.

$$
\chi(a)=\left\{\begin{aligned}
1 & \text { if } a \text { is a quadratic residue in } G F(q), \\
-1 & \text { if } a \text { is a quadratic non-residue in } G F(q), \\
0 & \text { if } a=0
\end{aligned}\right.
$$

Paley construction-I gives Hadamard matrices of order $q+1$, where $q \equiv 3(\bmod 4)$ and Paley construction-II gives symmetric Hadamard matrices. It has been shown that, if $q \equiv 1(\bmod 4)$, then by replacing all 0 entries of $H=\left[\begin{array}{cc}0 & j^{T} \\ j & Q\end{array}\right]$ by the matrix $\left[\begin{array}{cc}1 & - \\ - & -\end{array}\right]$ and all ± 1 entries by the matrix $\pm\left[\begin{array}{cc}1 & 1 \\ 1 & -\end{array}\right]$, one can construct a symmetric Hadamard matrix of size $2(q+1)$ (Here, we denote -1 by $-\operatorname{sign})$. Where Q is a symmetric matrix of order $\mathrm{q}(Q$ constructed using $\chi(a)$) and j is a column vector of length q with all entries 1 . Also, symmetric matrix Q has the properties

$$
\begin{gathered}
Q Q^{T}=Q^{2}=J-q I \text { and } \\
Q J=J Q=0,
\end{gathered}
$$

where, J is the $q \times q$ matrix with all entries 1 .
Another popular construction was discovered by John Williamson in 1944 which are generalizations of some of Paley's work. He constructed Hadamard matrices of order $4 u$ using four symmetric circulant matrices A, B, C, D of order u with entries ± 1 and satisfying both,

$$
X Y^{T}=Y^{T} X, \text { for } X \neq Y \in\{A, B, C, D\} \text { and } A A^{T}+B B^{T}+C C^{T}+D D^{T}=4 u I_{u}
$$

In 1970, Symmetric Hadamard matrices of order 36 were constructed by [8] Bussemaker and Seidel and Symmetric conference matrices of order 46 were constructed by R. Mathon in 1978 [9].

A conference matrix is a square matrix C with 0 on the diagonal and ± 1 on the off diagonal such that $C^{T} C$ is a multiple of the identity matrix I. Thus, if the matrix has order $n, C^{T} C=(n-1) I$. There are some relations between conference matrices and

Hadamard matrices of order n. But not all conference matrices represent Hadamard matrices since conference matrices of size $n=2(\bmod 4)$ exist.

In 2014, by modifying Mathon's construction, Balonin and Seberry have constructed symmetric conference matrices of order 46 [10]. It is inequivalent to those Mathon. If two Hadamard matrices (H_{1} and H_{2} with same order) are said to be equivalent, if H_{1} can be obtained from H_{2} by permuting rows and columns and by multiplying rows and columns by -1 . Up to equivalence a unique Hadamard matrix of order $1,2,4,8$ and 12 exists [11]. Matteo, Dokovic and Kotsireas constructed symmetric Hadamard matrices of order $92,116,172$ [12]. All of them are constructed by using the GP array of Balonin and Seberry. Moreover, Kharaghani and Tayfeh discovered Hadamard matrix of order 428 using T-sequences [13]. Now unknown smallest order Hadamard matrix is 668276 for skew-Hadamard matrices, and 188 for symmetric Hadamard matrices [14].

In this paper we propose an alternative method of constructing symmetric Hadamard matrices using quadratic non-residues over finite fields.

2. MATERIAL AND METHODS

First, we define a function, $\overline{\chi(a)}$ as follows. It indicates whether the given finite field element a is a perfect square or not.

$$
\overline{\chi(a)}=\left\{\begin{array}{cc}
-1 & \text { if } a \text { is a non zero quadratic residue in } G F(q), \\
1 & \text { if } a \text { is a quadratic non- residue in } G F(q) \\
0 & \text { if } a=0
\end{array}\right.
$$

Let R be the matrix whose rows and columns are indexed by elements of $G F(q)$ and construct using $\overline{\chi(a)}$.

The matrix $R=-Q$ is Symmetric matrix of order q with zero diagonal and ± 1 elsewhere. Also, symmetric matrix R has the properties

$$
\begin{gathered}
R R^{T}=R^{2}=J-q I \text { and } \\
R J=J R=0
\end{gathered}
$$

Where, I is the $q \times q$ matrix with all entries 1 .
Method: Let $q \equiv 1(\bmod 4)$.

For $n \geq 1$

A symmetric Hadamard matrix of order $2^{n+1}(q+1)$ can be constructed by replacing all 0 entries of

$$
H_{2^{n+1}(q+1)}=\left[\begin{array}{ll}
0 & j^{T} \\
j & R
\end{array}\right]
$$

by the matrix

$$
A_{2^{n+1}}=\left[\begin{array}{cc}
A_{2^{n}} & A_{2^{n}} \\
A_{2^{n}} & -A_{2^{n}}
\end{array}\right]
$$

and all ± 1 entries by the matrix

$$
\pm A_{2^{n+1}}^{\prime}= \pm\left[\begin{array}{cc}
A_{2^{n}}^{\prime} & A^{\prime}{ }_{2^{n}} \\
A_{2^{n}}^{\prime} & -A_{2^{n}}^{\prime}
\end{array}\right]
$$

where

$$
A_{2}=\left[\begin{array}{ll}
1 & - \\
- & -
\end{array}\right], A_{2}^{\prime}=\left[\begin{array}{ll}
1 & 1 \\
1 & -
\end{array}\right],
$$

and j is a column vector of length q with all entries 1 .

Example I (Using proposed method)
Consider $q=5$ (quadratic non-residues are 2 and 3) and $n=1$.
A symmetric Hadamard matrix H_{24} of order $2^{2}(5+1)=24$ can be constructed by replacing all 0 entries of

$$
H_{24}=\left[\begin{array}{cc}
0 & j^{T} \\
j & R
\end{array}\right]
$$

by the matrix

$$
A_{2^{\mathrm{a}}}=\left[\begin{array}{cc}
A_{2} & -A_{2} \\
-A_{2} & -A_{2}
\end{array}\right]
$$

and all ± 1 entries by the matrix

$$
\begin{gathered}
\pm A_{2^{x}}^{\prime}= \pm\left[\begin{array}{cc}
A_{2}^{\prime} & A_{2}^{\prime} \\
A_{2}^{\prime} & -A_{2}^{\prime}
\end{array}\right] . \\
R=\left[\begin{array}{ccccc}
0 & - & 1 & 1 & - \\
- & 0 & - & 1 & 1 \\
1 & - & 0 & - & 1 \\
1 & 1 & - & 0 & - \\
- & 1 & 1 & - & 0
\end{array}\right]
\end{gathered}
$$

Then, clearly

$$
H_{24} H_{24}^{T}=24 I \text { and } H_{24}=H_{24}^{T}
$$

Therefore, H_{24} is a symmetric Hadamard matrix of order 12, where H_{24} is given by
$\mathbf{H}_{24}=\left[\begin{array}{llllllllllllllllllllllllllll}1 & - & 1 & - & 1 \\ - & - & - & - & 1 & - & 1 & - & 1 & - & 1 & - & 1 & - & 1 & - & 1 & - & 1 & - & 1 & - & 1 & - \\ 1 & - & - & 1 & 1 & 1 & - & - & 1 & 1 & - & - & 1 & 1 & - & - & 1 & 1 & - & - & 1 & 1 & - & - \\ - & - & 1 & 1 & 1 & - & - & 1 & 1 & - & - & 1 & 1 & - & - & 1 & 1 & - & - & 1 & 1 & - & - & 1 \\ 1 & 1 & 1 & 1 & 1 & - & 1 & - & - & - & - & - & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & - & - & - & - \\ 1 & - & 1 & - & - & - & - & - & - & 1 & - & 1 & 1 & - & 1 & - & 1 & - & 1 & - & - & 1 & - & 1 \\ 1 & 1 & - & - & 1 & - & - & 1 & - & - & 1 & 1 & 1 & 1 & - & - & 1 & 1 & - & - & - & - & 1 & 1 \\ 1 & - & - & 1 & - & - & 1 & 1 & - & 1 & 1 & - & 1 & - & - & 1 & 1 & - & - & 1 & - & 1 & 1 & - \\ 1 & 1 & 1 & 1 & - & - & - & - & 1 & - & 1 & - & - & - & - & - & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ 1 & - & 1 & - & - & 1 & - & 1 & - & - & - & - & - & 1 & - & 1 & 1 & - & 1 & - & 1 & - & 1 & - \\ 1 & 1 & - & - & - & - & 1 & 1 & 1 & - & - & 1 & - & - & 1 & 1 & 1 & 1 & - & - & 1 & 1 & - & - \\ 1 & - & - & 1 & - & 1 & 1 & - & - & - & 1 & 1 & - & 1 & 1 & - & 1 & - & - & 1 & 1 & - & - & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & - & - & - & - & 1 & - & 1 & - & - & - & - & - & 1 & 1 & 1 & 1 \\ 1 & - & 1 & - & 1 & - & 1 & - & - & 1 & - & 1 & - & - & - & - & - & 1 & - & 1 & 1 & - & 1 & - \\ 1 & 1 & - & - & 1 & 1 & - & - & - & - & 1 & 1 & 1 & - & - & 1 & - & - & 1 & 1 & 1 & 1 & - & - \\ 1 & - & - & 1 & 1 & - & - & 1 & - & 1 & 1 & - & - & - & 1 & 1 & - & 1 & 1 & - & 1 & - & - & 1 \\ 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & - & - & - & - & 1 & - & 1 & - & - & - & - & - \\ 1 & - & 1 & - & 1 & - & 1 & - & 1 & - & 1 & - & - & 1 & - & 1 & - & - & - & - & - & 1 & - & 1 \\ 1 & 1 & - & - & 1 & 1 & - & - & 1 & 1 & - & - & - & - & 1 & 1 & 1 & - & - & 1 & - & - & 1 & 1 \\ 1 & - & - & 1 & 1 & - & - & 1 & 1 & - & - & 1 & - & 1 & 1 & - & - & - & 1 & 1 & - & 1 & 1 & - \\ 1 & 1 & 1 & 1 & - & - & - & - & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & - & - & - & - & 1 & - & 1 & - \\ 1 & - & 1 & - & - & 1 & - & 1 & 1 & - & 1 & - & 1 & - & 1 & - & - & 1 & - & 1 & - & - & - & - \\ 1 & 1 & - & - & - & - & 1 & 1 & 1 & 1 & - & - & 1 & 1 & - & - & - & - & 1 & 1 & 1 & - & - & 1 \\ 1 & - & - & 1 & - & 1 & 1 & - & 1 & - & - & 1 & 1 & - & - & 1 & - & 1 & 1 & - & - & - & 1 & 1\end{array}\right]$

Example II (Using proposed method)
Consider $q=5$ (quadratic non-residues are 2 and 3) and $n=2$.
A symmetric Hadamard matrix H_{48} of order $2^{3}(5+1)=48$ can be constructed by replacing all 0 entries of $H_{48}=\left[\begin{array}{cc}0 & j^{T} \\ j & R\end{array}\right]$ by the matrix $\quad A_{2^{\mathrm{s}}}=\left[\begin{array}{cc}A_{2^{\mathrm{a}}} & -A_{2^{\mathrm{a}}} \\ -A_{2^{\mathrm{a}}} & -A_{2^{\mathrm{a}}}\end{array}\right]$, and all ± 1 entries by the matrix $\pm A_{2^{\mathrm{s}}}^{\prime}= \pm\left[\begin{array}{cc}A^{\prime} 2^{\mathrm{a}} & A^{\prime}{ }_{2^{\mathrm{a}}} \\ A_{2^{\mathrm{a}}}^{\prime} & -A_{2^{\mathrm{a}}}^{\prime}\end{array}\right]$.

We can get, $H_{48} H_{48}{ }^{T}=48 I$ and $H_{48}=H_{48}{ }^{T}$
Therefore, H_{48} is a symmetric Hadamard matrix of order 48.

Example III

Now consider $q=13$ (quadratic non-residues are $2,5,6,7,8$ and 11) and $n=1$.

$$
R=\left[\begin{array}{ccccccccccccc}
0 & 1 & - & 1 & 1 & - & - & - & - & 1 & 1 & - & 1 \\
1 & 0 & 1 & - & 1 & 1 & - & - & - & - & 1 & 1 & - \\
- & 1 & 0 & 1 & - & 1 & 1 & - & - & - & - & 1 & 1 \\
1 & - & 1 & 0 & 1 & - & 1 & 1 & - & - & - & - & 1 \\
1 & 1 & - & 1 & 0 & 1 & - & 1 & 1 & - & - & - & - \\
- & 1 & 1 & - & 1 & 0 & 1 & - & 1 & 1 & - & - & - \\
- & - & 1 & 1 & - & 1 & 0 & 1 & - & 1 & 1 & - & - \\
- & - & - & 1 & 1 & - & 1 & 0 & 1 & - & 1 & 1 & - \\
- & - & - & - & 1 & 1 & - & 1 & 0 & 1 & - & 1 & 1 \\
1 & - & - & - & - & 1 & 1 & - & 1 & 0 & 1 & - & 1 \\
1 & 1 & - & - & - & - & 1 & 1 & - & 1 & 0 & 1 & - \\
- & 1 & 1 & - & - & - & - & 1 & 1 & - & 1 & 0 & 1 \\
1 & - & 1 & 1 & - & - & - & - & 1 & 1 & - & 1 & 0
\end{array}\right]
$$

A symmetric Hadamard matrix H_{56} of order $2^{2}(13+1)=56$ can be constructed by replacing all 0 entries of

$$
H_{56}=\left[\begin{array}{cc}
0 & j^{T} \\
j & R
\end{array}\right]
$$

by the matrix

$$
A_{2^{\mathrm{a}}}=\left[\begin{array}{cc}
A_{2} & -A_{2} \\
-A_{2} & -A_{2}
\end{array}\right],
$$

and all ± 1 entries by the matrix $\pm A_{2^{\prime}}= \pm\left[\begin{array}{cc}A_{2}{ }^{\prime} & A_{2}{ }^{\prime} \\ A_{2}{ }^{\prime} & -A_{2}{ }^{\prime}\end{array}\right]$.
We can get, $H_{56} H_{56}{ }^{T}=56 I$ and $H_{56}=H_{56}{ }^{T}$
Therefore, H_{56} is a symmetric Hadamard matrix of order 56 .

3. RESULTS AND DISCUSSION

Using the proposed method, we can construct symmetric Hadamard matrix of order $2^{n+1}(q+1)$ where $q \equiv 1(\bmod 4)$ and $n \geq 1$.

CONCLUSIONS

The proposed alternative method which is our main result, can be used to construct an infinite number of Hadamard matrices. In this work, we used quadratic non-residues over a finite field. Using proposed method, we can construct symmetric Hadamard matrix of order $2^{n+1}(q+1)$ where $q \equiv 1(\bmod 4)$ and $n \geq 1$. As a future work, planning to implement a computer programme to prove our method and construct large symmetric Hadamard matrices of order $2^{n+1}(q+1)$.

REFERENCE

[1] H. J., " Résolution d’une Question Relative aux Déterminants," Bulletin des Sciences Mathématiques, vol. 17, pp. 240-246, 1893.
[2] K. Horadam, Hadamard Matrices and Their Applications, Princeton University Press, 2006.
[3] A. Hedayat and W. Wallis, "Hadamard matrices and their applications," The annals of statistics, vol. 6, pp. 1184-1238, 1978.
[4] J. Sylvester, "Thoughts on inverse orthogonal matrices, simultaneous signsuccessions, and tesselated pavenments in two or more colors, with application to Newton's rule, ornamental tile-work, and the theory of numbers," Phil. Mag., vol. 4, pp. 461-475, 1867.
[5] J. Hadamard, "Resolution d'une question relative aux d ' eterminants," Bull. Sciences Math, pp. 240-246, 1893.
[6] R. Paley, "On Orthogonal Matrices," Journal of Mathematics and Physics, pp. 311320, 1933.
[7] J. Williamson, "Hadamard's determinant theorem and the sum of four squares," Duke Math J., pp. 65-81, 1944.
[8] F. Bussemaker and J. Seidel, "Symmetric Hadamard matrices of order 36," Technological University, Eindhoven, 1970.
[9] R. Mathon, "Symmetric conference matrices of order pq2 + 1," Canad. J. Math, vol. 30, pp. 321-331, 1978.
[10] N. Balonin and J. Seberry, "A review and new symmetric conference matrices," Informatsionno-upravliaiushchie sistemy, vol. 4(71), pp. 2-7, 2014.
[11] H. Kharaghani and B. Tayfeh-Rezaie, "Hadamard matrices of order 32," Journal of Combinatorial Designs, vol. 21(5), pp. 212-221, 2012.
[12] O. Matteo, D. Đoković and S. Kotsireas, "Symmetric Hadamard matrices of order 116," De Gruyter, vol. 3, pp. 227-234, 2015.
[13] H. Kharaghani and B. Tayfeh- Rezaie, "A Hadamard matrix of order 428," Journal of Combinatorial Designs, pp. 435-440, 2005.
[14] N. Balonin, D. Đoković. and D. Karbovskiy, "Construction of symmetric Hadamard matrices of order 4 v for $\mathrm{v}=47,73,113$," De Gruyter, vol. 6, pp. 11-22, 2017.

[^0]: *Corresponding author: anushabatuwita@gmail.com

