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ABSTRACT 

The maximum amount of losses retained by the insured under deductible policy 

modifications is usually set as part of the terms of the policy conditions. The objective of 

this study are to (i) estimate mean losses of an insured risk by means of the operational 

behavior of density function with deductible modifications and (ii) compare the mean 

severities under exponentially and log-normally distributed arbitrary policy in a cost per 

loss and cost per payment contingencies. The results show that despite the established fact 

in literature that log-normal severity distribution has a thicker tail than the exponential 

distribution, its cost per loss payment is correspondingly lower than the corresponding 

values of the exponential mean loss. Computational evidence over the trend of the 

change in the loss eliminated in the domain for which deductible has been defined 

revealed that the cost per loss amount is less than the cost per payment amount in the two 

models. The method can be used to estimate aggregate claims as the deductible level 

increases for every scheme holder and such that the estimated claims could be compared 

with the hypothetical observed claims which can be arrived at by applying the 

hypothetical deductible value to the background losses. 
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1. INTRODUCTION TO SINGULARITY FUNCTIONS 

 

The objective of this study are to (i) estimate mean losses of an insured risk by means of the 

operational behavior of density function with deductible modifications and (ii) compare 

the mean severities under exponentially and log-normally distributed arbitrary policy in a 

cost per loss and cost per payment contingencies. Underwriters enforce deductibles as part 

of their underwriting processes in order to share risks with the policies they manage.  
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By introducing deductibles and sharing the risk, the underwriter expects the insured to be 

more cautious. Deductible is a form of retention that provides economic incentives to the 

scheme holder to manage his own losses. In practice, the more an insured is actively 

participating in the cost of his claim, the better it will be to prevent nuisance claims. 

Consequently, smaller claims will be advised to the underwriter. Processing of claims such 

as verification costs could be significant for the insurance firm and this is the reason why 

underwriters will prefer to reduce the number of claims with lower amounts. However, the 

introduction of deductible amount may upset the insured because the losses will not be 

indemnified in full. We observe in Pacakova & Brebera (2015) and Zacaj et al. (2015) 

that the severity distributions used for risk theoretical analysis could be evaluated only 

after rigorous data processing because the generation of loss distribution arising from 

insurance data is very difficult. However deductible statistics is quite limited since database 

containing information on deductible, policy and claim may be missing or unavailaible. In 

Zacaj et al. (2015); Bakar et al. (2015), We also observe that claim generating processes 

is essentially tedious under social-economic conditions and consequently, the magnitude of 

claim could be obtained by the claim size management of an insurance contract. Following 

Raschke (2019), medium size claim could be subject of log-normal framework influenced 

by base distribution function  bF x and base survival distribution  bS x and resulting in a 

random risk.  Insurance managers place strong emphasis on severities in relation to 

selecting an adequate probability model to analyse claims data. A clear knowledge of 

loss distribution in risk theory is therefore needed to summarise and model claims data. 

In actuarial discipline, the ability to understand and interpret claim data is a requirement 

to build a good claim model which allows us to make a critical underwriting judgement 

in estimating premiums, expected profit and reserve, hence the knowledge of the 

distribution of insurance claims data can further be used to advise underwriters on 

reinsurance decisions. In general insurance business, the objective of risk theory is to 

quantify and analyse the dimensions of the risk of severity. We infer from Tse (2009) 

that actuarial risk theory is responsible for building models of pricing based on 

observations of the random variables for the expected size of claim 

outgo     
 
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    and frequency of claims  e  

where  ih x  are function of random risk, the exposure e  is expressed as  e S l   , 

S is the sum insured of insurance under cover,  l  is length of time during which period 

the scheme holder has been exposed to severity risk and   0e
I
 

is the indicator function.  

The main responsibility of a claim actuary in policy underwriting is to obtain 

appropriate value on the cash flows from the insurance industry. From the knowledge of 

the cash flows, actuarial models are constructed to describe and analyse cash flow 

process. General insurance including casualty and health insurance describe the most 

critically challenging sector for claims actuaries because it is driven by data where the 

cash outflow is the claim outgo. Analysis of the severity claim based models such as log-
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normal and exponential distribution using appropriate density functions form the basis of 

solving actuarial claim issues arising in general insurance business. In Afify et al (2020), 

claim managers seldom bother on occurrence of claim but are concerned with the random 

processes describing the severity value the claim managers pays as indemnity rather than 

the particular events resulting in the claims process. Consequently, claims manager 

should have a good knowledge of loss distribution models which consists of total 

amounts of claims payable by insurers over a defined period.  Insurance industry is data 

driven probably in large amounts which could be infrequent and consequently, it is 

necessary to identify suitable density models having the characteristics of heavy tails 

such as log-normal distribution and high skewness such as exponential distribution. 

 

Following Afify et al (2020), loss distribution is a description of risk exposure units e the 

degree of which is computed from risk indicator metrics which are functions of the 

model. Underwriting managers usually employ the risk metrics to assess the level at 

which the insurance firms are exposed to defined areas of risks arising from vagaries of 

underlying variables such as prices and interest rates. In Tse (2009), the upper tail of a 

severity size distribution in general insurance business can be modelled by log-normal 

distribution although the upper tail may not necessarily be log-normally distributed. The 

model should be adequate to the extent of enabling decisions relating to solvency 

requirements, loading, premium analysis, technical reserve, expected profit forecast, 

reinsurance and the influence of deductibles on severities. The size of a claim at a 

material time is of particular significance to the underwriting management of an 

insurance firm. The conditions under which claims data are obtained and future claims 

subsequently estimated is an enabling factor to estimate severity amounts in general 

insurance business as samples from definite but usually heavy tailed probability 

distributions. In view of Tse (2009), it is observed that as a probability based actuarial 

model for severity analysis, the probability of financial losses experienced by scheme 

holders and indemnified by insurance firm should be clearly understood under the 

contract setting.  

 

Analytical actuarial distributions are deployed to assess the cost to the extent that such 

distributions are positively skewed having high probability densities on the right tails. 

Since the distribution are specifically applied to analyse losses, they are then tagged loss 

distribution models. Claim modelling remains the basis of information content for 

underwriting firms in order to obtain estimate of premium, loading, reserves, profits and 

capital required to ascertain overall profitability and to assess the effect of deductible 

regimes. Although it is reasonable to fit probability distributions to claim data, analytical 

probability distribution is rather powerful technique to employ in analyzing claims data 

and consequently, there is need to construct model which can be used to estimate the 

distribution of claims under exponentially and log-normally distributed actuarial data 

involving deductible clauses. For the purpose of this work, we are concerned with the 

analysis of log-normal and exponential distributions of claims estimations for policies 
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having deductible clauses. For positive claims data, heavy tailed distributions are useful 

tools of analysis. In general insurance business, claims data are usually skewed to the 

right tail and any distribution showing this type of behavior is sufficient for the analysis 

of severities (Sakthivel & Rajitha, 2017). The choice of theses distributions is based on 

this principle of claims data to compare a light tailed and heavy tailed in the evaluation of 

deductible. Moreover, because of the small size of the data both the exponential and log-

normal models can cover better the behavior of such losses (Ahmad, Mahmoudi, 

Hamedani & Kharazmi, 2020). An important characteristic of a probability distribution 

to meet the requirements of an heavy tailed probability density is that the distributions is 

expected to have a tail probabilities exceeding 1 that is 
 

lim 0
y

y
Y

e

S y





  
 

  

 for every 

0  , where  YS y is the survival function. It is assumed provided that there are no 

points of truncation in the data, the first moment of the distribution should exist. Claim 

modelling is therefore necessary because the construction of adequate explainable loss 

model serves as the foundation of critical underwriting decisions taken in relation to 

premiums and claims assessment to ascertain profitability. 

 

2.0 ACTURIAL PRELIMINARIES OF DEDUCTIBLE 

 

Deductibles is a fundamental concept in general insurance underwriting because it 

determines the frequency of times the scheme holder advises claim and it could also 

determine the value of indemnity payable to the policy holder in the event of a 

contingency. However, deductible could influence insurance claims to be observed with 

censoring and truncation which are usually dealt with during premium pricing of 

insurance contracts. Suppose   represents the frequency of loss advised and iX  denotes 

the severity of the insurance loss which are assumed independent of one another. 

Furthermore, suppose we apply the retention D such that the risk function defined by 

 
0

,
i

i

i i

X D
R X D

X D X


 

  
    (1) 

Following Brown & Lennox (2015) and the definition of censoring and truncation in 

actuarial literature, we define the followings. The censored severity is 

 
0 ii

R

i i

X D
D

X D X



 

  
     (2) 

The truncated severity is  

 , |i i iX D X D D X         (3) 

Let  

 
1

0

i

i

D X
I D X
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
  


      (4) 
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        1 Pr 0 Pr Pri i i iE I D X D X D X D X          be an indicator function 

then     
1

R i

i

D I D X





  is the number of claims. 

The sum of the censored severity over i  is,  

   
1

i

R R

i

D D





         (5) 

is the total claim. Following Brown and Lennox (2015), the deductible relativity  for a 

single loss on a single claim of an insurance contract is given by  

 
  

 
,

 
i

Deductiblerelat
E X

ivit
E

y
D

X



      (6) 

Consequently, 

  
 

 
,

1
iE X D

LER X
E X


       (7) 

the loss elimination ratio  

 
  RX E X D

LER y
X


      (8) 

  
 

  ,
1

i RE X D X E X D

E X X

 
      (9) 

Following Ogungbenle (2020; 2021b)  

    
0

RR XE X D xf x dx



        (10) 

      R X

D

E X D x D f x dx



      (11) 

Using            1X X X X X XF x S x F x S x f x S x            

 

           1R X X

D D

E X D x D dS x x D d F x

 

         (12) 

 

          1R X X XD
D D

E X D S x x D F x dx S x dx

 
  

        
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 
0

XX xf x dx



        (14) 

Theorem 2.1: Let  

      .RE X D E x D I x D        (15) 

If   is a random variable and I is indicator function. Then  



 
 

JSc EUSL (2022), vol. 13, no. 1, p 1-23  

6 

 

(i) 
  

 
2

2

R

X

d E X D
f D

dD
 ;     (16) 

(ii)       
0

D

R X X

d
E X D f d f d

dD
   





   .  (17) 

Proof: 

We recognize that  
0

1Xf d 


  and we can express   RE X D  above as 

          

    

.

1

R X

D

X X

D

E X D x D f x dx E x D I x D

xf x dx D F D




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 
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  (18) 

       1R X X

D

d d
E X D xf x dx D F D

dD dD

 
   

 
 ;  (19) 

        1R X X

D

d d d
E X D xf x dx D F D

dD dD dD

 
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 
 . (20) 

Recall that if    
 

 

,

b s

a s

s g y s dy   then 

 
 

 

 

         , , ,

b s
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d s
g y s dy g b s s b s g a s s a s

ds s s s

   
  

  

  

(20a) 

Differentiating equation (20) with respect to D while applying (20a) to the integral, we 

have  

          0R X X X

D

d dD d
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          (21) 

        1R X X X

d
E X D D f D F D D F D

dD
       . (22) 

 

Plugging    X XF D f D   in (22), we have 

        1R X X X

d
E X D D f D F D D f D

dD
       ; (23) 

     1R X

d
E X D F D
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  ,     (24) 

and consequently, equation (24) implies 

     1
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 


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Since  
0

1Xf d 


 ,  

      
0

D

R X X

d
E X D f d f d

dD
   




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Differentiating both sides of equation (24) with respect to D again, we have 

 

  
   

2

2

R

X X

d E X D d
F D F D

dD dD
  ;   (26) 

  
 

2

2

R

X

d E X D
f D

dD
 .     (27) 

The essence of deductible relativity  is to investigate by how much the size of an 

insurance loss has been minimized by the deductible D from a per loss perspective. 

However, the function  LER y  is a measure of how much the covered loss is minimized 

through the application of D . Suppose the insurance scheme has an upper limit of cover 

 , the function 

 
   

 

0

0

D

X X

D

X

xf x dx f x dx

LER y

xf x dx
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




 



.    (28) 

Following Brown & Lennox (2015), we let BD denote the base deductible, then the 

relativity  of aggregate claim is given as follows 
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,
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;  (30) 
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 (31) 

           
B
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D D
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     
 
 
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        
B

R B R R RD D
E D E D E X X     . (33) 

 

Theorem 2.2: Let  be a random loss with  E  . If 

       1R X

D

E X D x D d S x



   .   (34) 

Then 

 
 

  
1 1
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b

a b

a

D

X R
D D

a b D

d
S x dx E X D

D D E dD

 
 

  
  . (35) 

 

Proof: From equation (12),  

       1R X

D

E X D x D d S x



   .   (36) 

Integrating (36) by parts, we have 

 

            1 1R X X X
D

D D

E X D x D F x F x dx S x dx

 


          . (37) 

Similarly,     R X

D

E X D S x dx



   and consequently, 

       
D

R R X

D

E X D E X D S x dx   .   (38) 

Following Brown & Lennox (2015),  

        
0

D

R XE X D E E S x dx    .   (39) 

Substituting the deductibles aD   and bD  into equation (39) respectively, we have 

        
0

aD

R a XE X D E E S x dx    ;   (40) 

        
0

bD

R b XE X D E E S x dx    .   (41) 

Subtracting equation (41) from (40), We have 

                 
0 0

a bD D

R a R b X XE X D E X D E E S x dx E E S x dx   
  

     
  

 

          (42) 

Simplifying the difference in (42), We have 

                 
0 0

a bD D

R a R b X XE X D E X D E E S x dx E E S x dx          

          (43) 
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             
0 0

b aD D

R a R b X XE X D E X D E S x dx E S x dx       (44) 

           
0 0

b aD D

R a R b X XE X D E X D E S x dx S x dx
 

    
 
  . (45) 

Dividing equation (45) through by  E   and combine the integrals in the interval 

 ,a bD D , we have  

 
     

 

b

a

D
R a R b

X

D

E X D E X D
S x dx

E 


 .   (46) 

 

The value of  RX D  at some arbitrary points of deductibility D  can be expressed in 

terms of its value at a fixed point aD  and the derivatives of  RX D  is evaluated at that 

point aD .  Consequently, by expanding in Taylor‟s series, we have 

            
  

2

...
2

a

R R a a R a R a

D D
E X D E X D D D E X D E X D


     

                  (46a) 

Substituting bD D  in (46a),  we have and terminating after the first term on the right, 

we have 

          R b R a b a R aE X D E X D D D E X D   . (46b) 

Equation (46b) implies that we should multiply (46) by 
1

a bD D
 and take limits as 

a bD D  

 

 
     
  

1
lim lim

b

a b a b

a

D

R a R b

X
D D D D

a b a bD

E X D E X D
S x dx

D D E D D 

   
   

      
 ; (47) 

 

 
 

     
 

 
  

1 1
lim lim

1

b

a b a b

a

D

R a R b

X
D D D D

a b a bD

R

E X D E X D
S x dx

D D E D D

d
E X D

E dD





 

   
   

      




 (47a) 

Based on the definitions in Bahnemann (2015), we prove the following theorem. 

 

Theorem 2.3: If  

 ,INSURER

X X D
R X D

D D X



 

  
;    (48) 
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 
0 0

,REINSURER

X D
R X D

X D D X


 
 

   
.   (49) 

Suppose further that  

  x

Xf x e     for 0x  ,      (50) 

with mean  

 
1

E X


   for 0x  .     (51) 

Then  

      
1

,
D

INSURERE R X D e E






  .   (52) 

Proof: 

   Pr D

XX D S D e    ;     (53) 

   
1

Pr
D

XX D S D e 


   ;     (54) 

      
0

,

D

INSURER X X

D

E R X D xf x dx xf x dx



   ;  (55) 

        
0

,INSURER X X X

D D

E R X D xf x dx xf x dx xf x dx

  

     ; (56) 

        ,INSURER X

D

E R X D E x x D f x dx



   .  (57) 

Let  

x D x D      ;     (58) 

dx d ;       (59) 

      
0

,INSURER XE R X D E x f D d  


   ;  (60) 

  x

Xf x e   ;      (61) 

   D

Xf D e
 

 
 

  ;     (62) 

    

0

1
,

D

INSURERE R X D e d
 

 



 

   ;   (63) 

      

0

1
,

D

INSURERE R X D e e d
 

 



 

   ;  (64) 
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      

0

1
,

D

INSURERE R X D e e d
 

 



 

   ;  (65) 

But    
   

0

e d E


  



        (66) 

Hence          
1

,
D

INSURERE R X D e E






  ;     (67) 

          
0

,REINSURER X X

D

E R X D E xdF x D D dF  
 

      ; (68) 

        
0 0

,

D

REINSURER X X X

D

E R X D dF dF D f d     
 

     ; (68a) 

        
0 0

,

D

REINSURER X X X

D

E R X D f d f d D f d       
 

     ; (68b) 

  

 

22
2 log1

,
2 2

e

REINSURER

X

D

D
E R X D Exp Exp

D f d

 
  



 


      
                 



 (68c) 

Theorem 2.4: Let  

      ,INSURERE R X D E x E x D


   ,   (69) 

and if  2,X Lognormal   , then 

    2 log1
, 1

lo
r

1

g
P

2

e

e

INSURER

D
E R X D Exp

D
x

Z


  







     
          

    

 
 







 (70) 

Proof: We recognize that 

     X

D

E x D x D f x dx




   .   (70a) 

Hence 

        ,INSURER X

D

E R X D E x x D f x dx



   .   (70b) 

For the log-normally distributed claim, we have that 

 

 
2

2

log

2
1 1

2

e x

Xf x e
x





 

   


 ;    (71) 



 
 

JSc EUSL (2022), vol. 13, no. 1, p 1-23  

12 

 

 
22

0

log

2

D

e

X

D
f d Exp

 
   



    
    

   
 .   (72) 

Observe that the first term in (72) 

  21

2
E x Exp  

 
  

 
;    (73) 

              ,INSURER X X X

D D

E R X D E x x D f x dx E x xf x dx DS x

  
      

 
  ; (74) 

              ,INSURER X X X

D D

E R X D E x x D f x dx E x xf x dx DS x

 

       ;  (75) 

 

 
2

2

log

2
1 1

2

e

X

D

x

D

x e
x

xf x dx dx





 


   



  ;    (76) 

 

 
2

2

log

2
1

2

e

D D

x

Xxf x dx dxe





 

  


 

  ;    (77) 

Following Tse (2009),  

     1X

D

xf x dx E x z



  
   ;    (78) 

where  

   
log

1 e D
z






 
    

 
;     (78a) 

   2 log1
1

2

e

X

D

D
xf x dx Exp


  




   

       
    

 ;    (79) 

        ,INSURER X X

D

E R X D E x xf x dx DS x



    ;   (80) 

        2 log1
, 1

2

e

INSURER X

D
E R X D E x Exp DS x


  



     
          

      

              (81) 

    

 

2 2 log1 1
, 1

2 2

e

INSURER

X

D
E R X D Exp Exp

DS x


    



       
             

          

   (82) 
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Consequently, the insurance loss has been minimized by the value 

 2 log1
Re 1

2

e D
duction Exp


  



     
        

      
;   (83) 

      
1

21
, 1 1 log

2
INSURER e XE R X D Exp D DS x


  



     
          

       

(84) 

Observe that  
log

Pr e
X

x
S D Z





 
  

 
 and substituting this in (83) above, we have 

    
1

2

log
Pr

1
, 1 1 log

2

e

INSURER eE R X D Exp D

D
x

Z

 








     
          

 



    

 
 







 (85) 

3.0 MATERIAL AND METHODS 

 

In this study, we shall apply both lognormal and exponential probability densities to 

enable us compute and compare cost per-loss, cost per-payment, loss elimination ratio 

under exponentially and Log-normally distributed severities for policies with deductible 

clauses. The appropriate properties of the two densities which will assist us in our 

computations will be discussed. Usually, loss modeling process is carried out through the 

use of appropriate continuous probability distributions whose expectations describe the 

severity value that scheme holders could claim. A random variable Y is said to be log-

normally distributed if its probability density function is given by 

 
 

2

2

log

2
1 1

2

e z

Yg z e
z





 

   


  .            (85a) 

Loss distribution function of lognormal distribution is given by 

 
 

2

2

log

2
1 1

2

e zy

Y

D

G z e dz
z







 
  



  ,    (86) 

and the moments are defined as  

 
2 21

2
r r

rE Y e
 

 
 

   ,  
21

2Y eE
 
 

 
  ,    22 22Y eE

 
 . (87)

 
 

The variance of the risk is  

   
2

2

2
1

2 2 2e eVar y
  
 

 
 

 
  
  

 .    (88) 

For both standard parametric estimation methods, the estimators are obtained in closed 

form. The method of moment estimations is defined as follows. 
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2

2

12

1 1
2

1

1

1 1
log log log

1

k

j
k k

j

e j e j e
kj j

j

j

x
k

x x
k k

x
k






 



  
  
      

       
      
   
  


 



;  (89) 

2

2
2 2

2
12

2
1 1

1

1

1 1
log log log

1

k

j
k k

j

e j e j e
kj j

j

j

x
k

x x
k k

x
k






 



  
  

      
       

      
  
  


 



.  (90) 

The log-normal distribution is preferred when modelling claim sizes because it is skewed 

to the right and has a thick tail. When    is a small number, then it bears semblance 

with normal distributions and this condition may be not be feasible. It is infinitely 

divisible and closed under scale and power transformations. Nevertheless, the Laplace 

transform has no definite closed form mathematical representations and the moment 

generating function is non-existing. 

 

We observe that   and 2  do not necessarily describe the mean and variance of y  but 

are somewhat logarithmic in form. However, in Bahnemann et. al. (2015), the density of 

an exponentially distributed random variable is given by 

 

     0,

xg x e I x 


 ;      (91) 

 

  1 xG x e     for 0x  .    (92) 

The Laplace transform is given as  

   
0

sxL s e g x dx
s







 
   for s   ;  (93)

  

 
 

0

!
1

r
r

r r r

s

L s r
m

s 



  


  for 0x  ;  (94) 

 
1

E x


  and  
2

1
Var x


 .   (95) 

The r
th

 root of Laplace transform is given as  

 

1

r

L s
s





 
  

 
,      (96) 

making it to be divisible. Despite the fact that its density function exponentially decays, it 

is useful in developing insurance risk models. The expected loss under log-normally 

distributed risk with deductible conditions is defined by 
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       L Y Y Y

D D D

Y y D g y dy yg y dy Dg y dy

  

      ; (97)  

   L Y Y

D

Y yg y dy DS D



  ,   (98) 

where  

 

 
2 2 2

2

log ln
1

2
2

1

2

e y D

Y

D D

yg y dy e dy e

   





 

                    
        

 (99)

  

 
log

Pr e

Y

y
S D Z





 
  

 
.   (100)

  

From the definition of log-normal distribution, we observe that 

 

 
   log log1 1e e

Y

y yd
g y

dy y

 

  

    
          

      (101) 

 
 

 

2 2

log

1 1

2 2

0 0

log1 1
;

2 2

e y

y
s s

e y
y e ds e ds





 



  
     

 
  . (102) 

Applying equation (20a) to differentiate equation (102), we obtain 

 

 
2

2

log

2
2

2

e y

Yg y e
y






 

 
  


 

          
     (103)

 

0y  , location   and scale 0  and therefore,  

 
 logy

e

S

y
g s ds







 .    (104)

 

The import of the paper lies in investigating techniques applicable in evaluating 

probability-based loss distributions as used in general insurance claims analysis. We see 

in Schlesinger (1985); Therese (2016), Liu and Wang (2017), and Woodard and Yi 

(2018) that under deductible conditions, the design of an adequate loss distribution which 

will model the severity of claims would enable insurance claim managers to have a good 

knowledge of claims data. 

 

3.1 Data Presentation and Analysis: Mean Severity Under Exponential and Log-

normal Distributions 

 

In non-life insurance business, data on deductibles is often difficult to access because 

they represent personal retentions which are only borne by policy holders.  We extend 

and further the scheme in Ogungbenle (2021a) by considering the rate relativity on 

deductible in order to compare the following standard empirical distributions by 
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investigating the insured risk Y with unit sum insured under insurance cover and with 

specified deductibles D under exponential and lognormal distributions 

 0.1 1, ~ , 1D Y EXP     and severity when log-normally distributed as 

 2 21
~ , , , , 1

2
Y LN assume       

3.2 Exponential distribution 

     
 

 
, ,

YD D

Y Z Y

Y

g D
S D e g D e H y

S D

    

  (105) 

     0.15

0.15

0.15 0.15 0.86071y

RE Y y e dy e



 


     ;  (106)

 

 
 

0.15

exp

0

0.86071 1
L y

Y P

Y

Y
S D e Y e dy

S D



       .
  (107)

 

 
0

1p YY g y dy



  , hence, we can see that   R pE Y D Y that is the cost per loss 

amount is less than the cost per payment amount.

   
Table 1: Computed values of cost per loss and loss elimination ratio for exponentially 

distributed claim Source: Ogungbenle (2021a) 

 

RELATIVITY COST PER LOSS LOSS ELIMINATION 

CHANGE IN 

LER COST PER 

DOMAIN LOSS RATIO RATIO-LER 

 

PAYMENT 

0.1 0.904837 0.095163 0.095163 0.0952 1 

0.15 0.860708 0.139292 0.139292 0.0441 1 

0.2 0.818731 0.181269 0.181269 0.042 1 

0.25 0.778801 0.221199 0.221199 0.0399 1 

0.3 0.740818 0.259182 0.259182 0.038 1 

0.35 0.704688 0.295312 0.295312 0.0361 1 

0.4 0.67032 0.32968 0.32968 0.0344 1 

0.45 0.637628 0.362372 0.362372 0.0327 1 

0.5 0.606531 0.393469 0.393469 0.0311 1 

0.55 0.57695 0.42305 0.42305 0.0296 1 

0.6 0.548812 0.451188 0.451188 0.0281 1 

0.65 0.522046 0.477954 0.477954 0.0268 1 

0.7 0.496585 0.503415 0.503415 0.0255 1 

0.75 0.472367 0.527633 0.527633 0.0242 1 

0.8 0.449329 0.550671 0.550671 0.023 1 

0.85 0.427415 0.572585 0.572585 0.0219 1 

0.9 0.40657 0.59343 0.59343 0.0208 1 

0.95 0.386741 0.613259 0.613259 0.0198 1 

1 0.367879 0.632121 0.632121 0.0189 1 

 

The loss eliminated (LE) and loss elimination ratio (LER) are as given below:  
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     ,P

L R pX D E X D Y ;   (108) 

       
  1

1 ,
R

L L

Y E Y D
LE y Y Y LER y

Y


     . (109) 

3.3 Lognormal distribution 

          

   

Y Y Y

D

R

D D

Y Y

D

y D g y dy yg y dy Dg y dyE

yg y dy DS

Y

D

D

  



    



  


 (110) 

 

 
2 2 2

2

log ln
1

2
2

1

2

e y D

Y

D D

yg y dy e dy e

   





 

                    
        

  (111) 

 

 
log

Pr e

Y

y
S D Z





 
  

 
.     (112) 

 

Table 2: Computed values of log-normally distributed cost per loss and cost per payment 

losses 

 

 

 

 1 ;  2 log ; 3 log ;

log
4 

0.1 1 e e

e

COLUMN COLUMN D COLUMN D

D
COLUMN

D 





    




(113) 

 
 

2

2

log

2
log 1

 5 ; 6 
2

e y

e

D

D
COLUMN COLUMN e dy







  

    


    .

   (114) 

1    2     3     4        5     6     7   8    9      10 

0.1 -2.3025851 -1.8025851 -1.8025851 -2.8025851 0.99746 0.00254 0.9642 0.90104 0.9344949 

0.15 -1.89712 -1.39712 -1.39712 -2.39712 0.99176 0.00824 0.9188 0.85394 0.9294079 

0.2 -1.6094379 -1.1094379 -1.1094379 -2.1094379 0.9825 0.0175 0.8661 0.80928 0.9343956 

0.25 -1.3862944 -0.8862944 -0.8862944 -1.8862944 0.9703 0.0297 0.8122 0.76725 0.9446565 

0.3 -1.2039728 -0.7039728 -0.7039728 -1.7039728 0.9558 0.0442 0.7592 0.72804 0.9589568 

0.35 -1.0498221 -0.5498221 -0.5498221 -1.5498221 0.9393 0.0607 0.7085 0.691325 0.9757586 

0.4 -0.9162907 -0.4162907 -0.4162907 -1.4162907 0.9215 0.0785 0.6613 0.65698 0.9934674 

0.45 -0.7985077 -0.2985077 -0.2985077 -1.2985077 0.903 0.097 0.6172 0.62526 1.013059 

0.5 -0.6931472 -0.1931472 -0.1931472 -1.1931472 0.8836 0.1164 0.5765 0.59535 1.0326973 

0.55 -0.597837 -0.097837 -0.097837 -1.097837 0.864 0.136 0.5391 0.567495 1.0526711 

0.6 -0.5108256 -0.0108256 -0.0108256 -1.0108256 0.844 0.156 0.5044 0.54136 1.0732752 

0.65 -0.4307829 0.0692171 0.0692171 -0.9307829 0.8241 0.1759 0.4723 0.517105 1.0948656 

0.7 -0.3566749 0.1433251 0.1433251 -0.8566749 0.8042 0.1958 0.4431 0.49403 1.1149402 

0.75 -0.2876821 0.2123179 0.2123179 -0.7876821 0.7847 0.2153 0.416 0.4727 1.1362981 

0.8 -0.2231436 0.2768564 0.2768564 -0.7231436 0.7651 0.2349 0.3909 0.45238 1.1572781 

0.85 -0.1625189 0.3374811 0.3374811 -0.6625189 0.7464 0.2536 0.3681 0.433515 1.1777099 

0.9 -0.1053605 0.3946395 0.3946395 -0.6053605 0.7273 0.2727 0.3464 0.41554 1.1995958 

0.95 -0.0512933 0.4487067 0.4487067 -0.5512933 0.7091 0.2909 0.3268 0.39864 1.2198286 

1 0 0.5 0.5 -0.5 0.6915 0.3085 0.3085 0.383 1.2414911 
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   log log
7 ; 8 Pr

e eD D
COLUMN COLUMN Z

 


 

    
          

   

. (115) 

The cost per loss under lognormal is computed in column 9 using equation (110), while 

the cost per payment under lognormal is computed in column 10 as given below. 

 

  
  
 log

10 : 
R

R P normal
Y

COLUMN
E Y D

E Y D Y
S D

 .   (116) 

 

In order to see the trend of the change in the loss eliminated in the domain for D  over 

which it has been defined, it was discovered that    ,R pE Y D Y that is the cost per 

loss amount is less than the cost per payment amount in either case of the two models. 

 

4. RESULTS AND DISCUSSION 

 

Following the result in Dupacova et al. (2003) while ignoring  XDS x , the term  E x D


  

at the right hand side of equation (69) can be expressed as follows: 

     
2

2 log1

2

log

e

X

D

e

D
E x D x D f x dx Exp

D
D

 
 








    

        
   

 
 
 


(117) 

From our observation in Table 1, the maximum value of D  is 1 . Consequently, 

substituting 1D   in equation (117) above, we obtain, 

     
2

2

1

log 11
1 1

2

log 1

e

X

e

E x x f x dx Exp
 

 







    

        
   

 
 
 


 (118) 

Observe that log 1 0e  , consequently, equation  (118) becomes 

     
2

2

1

1
1 1

2
XE x x f x dx exp

  
 

 


       

            
      

  (119) 

where    
2

1E x E x
  

 

    
       

  
     (120) 

and  .  is the distribution function for the standard normal distribution  0,1N . In 

table 1 above, the loss elimination ratio shows the ratio of the decrease in the expected 

payment with an ordinary deductible to the expected payment without the deductible. It 
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is instructive to note that  Y D Y Y D


     and consequently, this will represent a 

decrease in the overall losses which could define savings or retention to the scheme 

holder under deductible settings. From the foregoing we quickly observe that the loss 

elimination ratio computes the expected savings resulting from the deductibles when 

expressed as a percentage of the loss, a condition of no deductible. 

 

Using the last column of the table 1 and beyond a defined threshold, it becomes apparent 

that high deductibles may not permit a reasonable proportion of the eliminated loss due 

to the underwriting firm. The underwriter could adopt table 1 as a guide to ascertain if 

the deductible agreed to, by the insured and the insurer offers a reasonable percentage of 

the losses eliminated to the underwriter. We note that the cost per payment 1pY   is 

uniformly constant in the interval of definition irrespective of the value of the deductible. 

However, Table 2  is more challenging to obtain as a result of the framework of 

lognormal distribution but leads systematically to the calculation of cost per loss payment 

  RE Y D as shown in column 9 . The rate relativity 0.1 1D   of D  in column  1  is 

the basis for obtaining the cost per loss but since its values fall within 0 and 1 , the 

logarithmic values are negatives except at 1D  . A simple calculation of cost per 

payment
logp normal

Y from table 2  reveals a progressive increase from 0.934495  to 

1.241491. Consequently, 1, ,0.1 0.4pY for D    1, ,0.45 1pY for D    and 

therefore, the insurer experiences higher cost per payment than expected. The 

underwriter is therefore advised to apply deductible in the second subdomain so as to 

reduce the number and magnitude of nuisance claims advised and discourage moral 

hazards.  

 

Comparing mean values in tables 1 and 2  above, it is observed that despite lognormal 

severity distribution usually has a thicker tail than the exponential distribution in 

literature, its mean loss   RE Y D  column is observed to be correspondingly lower in 

value than the values of exponential mean loss,      
log expR Rnormal onential

E Y D E Y D


   

in the interval 0.1 0.75D  . It is amazing to observe that within 0.75 1.0D  , 

     
log expR Rnormal onential

E Y D E Y D


 . This is because irrespective of the values of the 

deductibles, the cost per payment under exponential distribution is constant at unity. 

However, the cost per payment under lognormal distribution steadily increases far above 

unity as relativity correspondingly increases within the interval 0.1 1.0D  . We should 

be reminded that the accuracy of the result depends very much on rate relativity collected 

for the analysis and this has a considerable application in actuarial literature. We need to 

stress that the deductibles have a significant effect on the number of payments such that 

if the deductible enforced increases, then the number of payments per period reduces and 
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in the corollary, when the deductibles reduces in value, then the number of payment per 

period increases too.  Let  Y i  assume the ground up losses.  Furthermore, let 

L represent the total number of losses. Assuming that a deductible has been imposed.  

Let  Pr Y D   defines the probability that a loss will translate to a payment function. 

Now, define the indicator function as  

 

 
1

0

if the ith loss occurs and results in a payment
I i

if it is otherwise


 


 

Consequently,  I i  is assumes a Bernoulli random variable and as such we have that  

   Pr 1 PrI i Y D        but     Pr 0 1 Pr 1I i Y D         . 

The probability generating function is given by 

        Pr 1 1 1
I i

P u Y D u u u        . 

Suppose P  represents the total number of payments, then  

         
1

1 2 3 ...
L

P L

k

I I I I I k




        . 

and hence P  becomes a compound frequency model or the aggregate claim models. If 

the collection         1 , 2 , 3 ,..., LI I I I  are mutually independent, then 

         
1

1 2 3 ...
L

P L

k

I I I I I k




         defines compound distribution and L  

serve as the primary distribution and a Bernoulli distribution. Consequently,  

    1 1P LP u P u 
   . 

 

CONCLUSION 

 

In the course of the data computations, we carried out comparative analysis of claim 

obtained from the two models above. This method can be used to estimate aggregate 

claims as the deductible level increases for every scheme holder and such that the 

estimated claims could be compared with the hypothetical observed claims which can be 

arrived at by applying the hypothetical deductible value to the background losses. This 

study provides a mathematical characterization of the deductible relativity for cost per 

loss insurance and cost per payment deductibles. Our contribution to literature is deep 

rooted in the generalization of coverage modifications to empirical data and the 

applications of coverage modifications theory to loss variable with continuous 

probability distribution functions where empirical data was used to compute claim value 

under the effect of coverage modifications of deductible.  
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We have established a deep relationship between severity and deductible which enables 

us to use a well-known density to deal with average loss functions. The deductible is 

meant to improve the underlying models of the underwriting business observed as a 

complete transfer of risk from scheme holder to the underwriter by introducing this 

variant of partial risk-transfer.  As a result of this partial risk-transfer mechanism, prime 

interest will be connected to the computation of the correct pricing as the premium for 

risk bearing. The application of deductible will usually expand the basic claim models 

but in comparison to complete risk transfer, there does not exist any form of equality 

between claims and indemnity. We should observe that if the kind of deductible to be 

used is known, the collection of claim number; claim value and aggregate claim will 

form the basis for constructing models for the number of indemnity payments; the 

indemnity value and aggregate indemnity.  The contractual estimation of a deductible can 

be obtained by the indemnity function that establishes a correspondence between claim 

and indemnity such as shown in equations (1), (2) and (48). Nonetheless, under a 

proportional deductible structure, there is no significant variation between claim number 

and indemnity number, however, for non-proportional deductibles, it is only the claims 

that are actually greater than the agreed deductible value that are usually indemnified and 

consequently the number of indemnities in comparison to the number of claims will be 

reduced essentially in the many insurance business bearing small deductibles because to 

a large extent, claim will concentrate around the neighbourhood of small insurance 

losses. 
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